错中思策教从错始

  【摘 要】 在数学教学中,每天都有学生在出错,这些错误是反映学生真实学习情况的重要资源。教师如何合理、巧妙地使用这些宝贵的资源,在备课过程中未雨绸缪,预测易犯错误;在教学过程中刨根问底,诱导潜在错误;节外生枝,布设错误陷阱;千变万化,走出思维定势误区;在教学手段上以退为进,引导反思错误,多方面引导学生能动的参与课堂,提高课堂教学效益。
  【关键词】 错误  资源  有效教学
  心理学家盖耶指出:“谁不考虑尝试错误,不允许学生犯错误,就将错过最富有成效的学习时刻。”放弃经历错误也就意味着放弃经历成功,远离谬误实际上也就是远离创造。然而,在实际教学中,许多教师视错误为洪水猛兽,唯恐避之不及,全然不顾“错误”这个生成资源,忽略了教学中的另一笔财富。那么教学中如何利用好这笔宝贵的财富呢?在此,笔者结合自已的教学实践在此谈谈关于利用数学教学中错误资源的几点做法。
  一、未雨绸缪——预测易犯错误
  建构主义理论认为,任何一个新知识,都是在学生原有的知识背景下建立的。“学生原有的认识对教学有正迁移和负迁移作用,教学时如果不挖掘学生中潜在的错误,不能巧妙地利用和转化学生中存在的错误,则会大大降低课堂教学效益。”因此,备课时,教师要揣摩学生学习此内容的心理过程,预测学生学习本节内容时可能出现的错误,以便在课内讲解时有意识地指出并加以强调,从而有效地预防错误的发生,做到“防患于未然”。
  例如:在教学完全平方公式时许多学生在解题中会出现(x-3)2=x2-9这样的错误,这是因为学生将平方差公式同两数差的平方相混淆,属于相近知识的互相干拢。这主要是由于学生在学习公式时不理解公式的来龙去脉、形式结构,只知机械记忆、生硬套用。因此,在教学中教师不仅要加强相近知识之间的区别和联系,同时在备课过程中对此类错误还要有预见性,在上课过程中应让学生亲自经历公式、法则、性质的推导、发现过程,促进学生对知识的理解,避免知识的负迁移。
  二、刨根问底—— 诱导潜在错误
  认知心理学认为:错误是学习的必然产物。学生出现的解题错误,是他们思维的结果,也正是“暴露”学生思维错误的好时机。在课堂教学中教师应捕捉这些错误,针对问题进行更深层次的追问,其表现形式可以是“为什么”“你是怎么想到的”“你是依据什么得到的”等等。揭露学生错误的思维过程,通过这样的“刨根问底”式的追问,诱导出潜在错误根源,将错误“斩草除根”。
  师:回答得真好!由单项式的定义我们可以发现分母中含有字母,根号下含有字母的代数式都不是单项式。
  通过教师刨根问底式的不断追问,学生接二连三地误判,学生对单项式概念的潜在错误理解已暴露无疑,知错而思之,思错而改之,单项式概念已深入人心。
  三、节外生枝——布设错误陷阱
  记忆规律告诉我们:“记忆深刻与否和刺激记忆的强度有关,要记住某一知识最好是在理解的基础上进行,同时多角度、多方位强化刺激,这樣,记忆才会深刻。”针对学生由于对某些数学概念、法则、定理、公式等理解得不够全面、透彻,而在判断、推理及解决问题的过程中出现的错误现象,有目的地呈现一些学生平时学习中常犯的错误,诱使学生陷入歧途,探知学生可能出现的认知障碍,让学生充分暴露自己的思维过程和知识缺陷。这样既可发现学生思维的薄弱环节,又能使学生深刻地认识到错误根源,有利于学生自诊自治,增强对错误的免疫力。
  在学习解一元一次方程时,对于学生常犯的“去分母”“去括号”“移项”的错误已经进行相应的训练后,在后来的一节复习课中,为了让学生用严谨的态度减少犯错,我故意布设陷阱呈现了平时练习中收集的学生犯的错误让学生辨析。
  通过这道典型例题呈现了学生平时解一元一次方程时常犯的所有错误,通过故布“陷阱”,从而有助于学生巩固正确的解题思路和方法,培养学生思维的严谨性,预防错误的再次出现。教材中的例题通常都是正例和范例,像这样人为地节外生枝设置一些“陷阱”, 将正、反例相结合引导学生辨析错误,让学生在各种有意误导中学会了辨别,进一步理解了知识,提升了探究能力。
  四、千变万化——走出思维定势误区
  学生在探究数学知识和规律时,通常是根据已有的知识和经验进行推理,这种推理有的是积极的,但有的则会造成一定的“思维定势”,而妨碍学生灵活运用知识对问题进行探究和思考。
  对于此题的教学,当学生出现错误时我们先不急于去纠正解题的思路,而是以退为进,引导学生在纠错的过程中总结反思解题的思路和方法,从而让学生对此类问题理解更深刻,更有利于逐步培养他们的自信心。
  错误同真理的关系,就像睡梦同清醒的关系一样。一个人从错误中醒来,就会以新的力量走向真理。因此,教师要宽容地对待学生在学习中出现的错误;善于捕捉、利用学生学习时的错误,灵活地运用于课堂教学;并适时地引导学生总结、反思,让学生在不断的知错、纠错、悟错中领略成功,使错误成为一次新的学习旅程的开始。
  参考文献
  [1] 中华人民共和国教育部.数学课程标准(实验稿)[M] .北京:北京师范大学出版社,2001.
  [2] 马飞 .初中数学解题易错点剖析[M].北京:金盾出版社,2007.
  [3] 刘永武. 初中学生解题错误的分析及对策[J]. 中国数学教育,2009(6).
  [4] 骆文娟. 探究纠错策略 改进教学方法[J].中国数学教育,2009(7-8).

未经允许,请不要转载《 错中思策教从错始
上一篇:高一物理中发现式学习与接受式学习的应用分析
下一篇:如何提高小学德育教学的实效性